
ES 4 VHDL reference sheet r.2020.04.03

-- This is a comment
/* Multi-line comment
 (VHDL 2008 only) */
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity ENTITY_NAME is
 port(
 PORT_NAME : in std_logic; -- Single bit input
 ANOTHER : out std_logic_vector(3 downto 0) -- 4-bit output
);
end;

architecture ARCH_NAME of ENTITY_NAME is
 -- Component declarations, if using submodules
 component SUB_ENTITY is
 port(
 -- Port list for the entity you're including
);
 end component;

 -- Signal declarations, if using intermediate signals
 signal NAME : TYPE;
begin
 -- Architecture definition goes here
end;

Types

No semicolon on the last one!

Type conversion

Literals

Just replace `entity` with `component`
and put `end component` at the end.

You almost always need these libraries;
just put this at the top of every file.

Continuous assignments
Also works for or, not, nand, nor, xor

Note '=' for comparison (not '==')

RESULT_SIGNAL <= SIGNAL1 and SIGNAL2;

RESULT_SIGNAL <= '1' when (SIGNAL1 = x"5") else '0';

TWO_BIT_VEC <= EIGHT_BIT_VEC(3 downto 2);

std_logic

std_logic_vector (n downto m)

unsigned (n downto m)

signed (n downto m)

Basic logic type, can take values 0, 1, X, Z (and others)

Ordered group of std_logic

Like std_logic_vector, but preferred
for numerically meaningful signals

'0', '1', 'X', 'Z'

"00001010", x"0c" 8-bit binary, hex

www.ece.tufts.edu/es/4

to_unsigned(INTEGER, WIDTH)

integer Poor for synthesis, but constants are integers by default 5, 38, 10000000

std_logic_vector(UNSIGNED)

unsigned(LOGIC_VECTOR) (Same things for signed)

INSTANCE_NAME : MODULE_NAME
 generic map (
 GENERIC => CONSTANT,
)
 port map(
 PORT => VALUE,
 ANOTHER => LOCAL_SIGNAL
);

Instantiate a submodule

Don't forget these semicolons!

9x"101"

Purple constructs are only available in VHDL 2008.
GRAY_ITALICS represent user-defined names or operations keywords

literals (constants)

HIGHEST_BIT <= EIGHT_BIT_VEC(7); Extract a single bit (7 is MSB, 0 is LSB)

Extract multiple bits

SIX_BIT_VEC <= "000" & EIGHT_BIT_VEC(3 downto 2) & SINGLE_BYTE; Concatenate

3b"101" 7d"101"
9-bit hex 3-bit binary 7-bit decimal

Use to_unsigned for unsigned constants before VHDL 2008.

Process blocks

Reporting stuff

Writing to files (or stdout)

for INDEXVAR in MIN to MAX loop
 -- loop body here
end loop;

Sequential logic
process (CLOCK) is
begin
 if rising_edge(CLOCK) then
 -- Clocked assignments go here
 end if;
end process;

if CONDITION then
 SIGNAL <= VALUE1;
elsif OTHER_CONDITION then
 SIGNAL <= VALUE2;
else
 SIGNAL <= VALUE3;
end if;

Case

process (SENSITIVITY) is

begin

-- if/case/print go here

end process;

If sensitivity includes:
all↕

clk↑

clk↑ + data↕

Nothing

Something else

Combinational logic

Flip-flop / register

Latch

Testbench (repeated evaluation)

Bad things you probably didn't want

Specify all signals by name prior to
VHDL 2008

concatenation conversion to string

report "MESSAGE" severity error; Severity can be NOTE, WARNING, ERROR, FATAL
"FATAL" ends the simulation

report "A is " & to_string(a);

report "A in hex is " & to_hstring(a);

Use image function prior to VHDL 2008

assert CONDITION report "MESSAGE" severity error; Print message if condition is false

Declare buffer in process block

Write buffer to stdout (like report, but just the text)
write(BUF, string'("MESSAGE"));
writeline(output, BUF);

variable BUF : line;

Append message to buffer

If/else

For loop

case INPUT_SIGNAL is
 when VALUE1 => OPERATION1;
 when VALUE2 => OPERATION2;
 when others => DEFAULT;
end case;

Declare file handle in process blockfile RESULTS : text;

file_open(RESULTS, "FILENAME", WRITE_MODE);
writeline(RESULTS, BUF);

Note spelling
of "elsif"!

for INDEXVAR in MAX downto MIN loop

To count down:

Enumerated types
type TYPENAME is (VAL1, VAL2, VAL3);

signal NAME : TYPENAME; Just like any other type

