Statistics Cheat Sheet

Mr. Roth, Mar 2004

1. Fundamentals

- a. Population Everybody to be analysed
 - Parameter # summarizing Pop
- b. Sample Subset of Pop we collect data on
 - Statistics # summarizing Sample
- c. Quantitative Variables a number
 - Discrete countable (# cars in family)
 - ♦ Continuous Measurements always # between
- d. Qualitative
 - Nominal just a name
 - Ordinal Order matters (low, mid, high)

Choosing a Sample

- Sample Frame list of pop we choose sample from
- Biased sampling differs from pop characteristics.
- Volunteer Sample any of below three types may end up as volunteer if people choose to respond.

Sample Designs

- e. Judgement Samp: Choose what we think represents
 - Convenience Sample easily accessed people
- f. Probability Samp: Elements selected by Prob
 - ♦ Simple random sample every element = chance
 - Systematic sample almost random but we choose by method
- g. Census data on every everyone/thing in pop

Stratified Sampling

Divide pop into subpop based upon characteristics

- h. Proportional: in proportion to total pop
- i. Stratified Random: select random within substrata
- j. Cluster: Selection within representative clusters

Collect the Data

- k. Experiment: Control the environment
- I. Observation:

2. Single Variable Data - Distributions

- m. Graphing Categorical: Pie & bar chart)
- n. Histogram (classes, count within each class)
- o. shape, center, spread. Symmetric, skewed right, skewed left
- p. Stemplots
- q. Mean: $\overline{x} = \sum_{i} x_i / n$
- r. Median: M: If odd center, if even mean of 2

s. Boxplot:

- t. Variance: $s^2 = \sum (x \overline{x})^2 / (n 1) = SS_x / (n 1)$,
- u. p78: standard deviation, $s = \sqrt{s^2}$

v.
$$SS_x = \sum (x - \bar{x})^2 = \sum x^2 - (\sum x)^2 / n$$

- w. Density curve relative proportion within classes area under curve = 1
- x. Normal Distribution: 68, 95, 99.7 % within 1, 2, 3 std deviations.
- y. p98: z-score $z = (x \overline{x})/s$ or $(x \mu)/\sigma$
- z. Standard Normal: N(0,1) when $N(\mu,\sigma)$

3. Bivariate - Scatterplots & Correlation

- a. Explanatory independent variable
- b. Response dependent variable
- c. Scatterplot: form, direction, strength, outliers
- d. form is linear negative, ...
- e. to add categorical use different color/symbol
- f. p147: Linear Correlation- direction & strength of linear relationship
- g. Pearsons Coeff: $\{-1 \le r \le 1\}$ 1 is perfectly linear + slope, -1 is perfectly linear slope.

$$\mathrm{h.} \quad r = \frac{1}{n-1} * \sum \frac{(x-\overline{x})}{s_x} \frac{(y-\overline{y})}{s_y} = \frac{SS_{xy}}{\sqrt{SS_x SS_y}} \; ,$$

i. $r = z_x z_y / (n - 1)$,

j.
$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{n}$$

4. Regression

- k. least squares sum of squares of vertical error minimized
- I. p154: $y = b_0 + b_1 x$, or $\hat{y} = a + bx$,
- m. (same as y = mx + b)

n.
$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{SS_{xy}}{SS_x} = r(s_y / s_x)$$

o. Then solving knowing lines thru centroid $((\overline{x},\overline{y});a=\overline{y}-b\overline{x}$

$$p. \quad b_0 = \frac{\sum y - (b_1 \sum x)}{n}$$

- q. r^2 is proportion of variation described by linear relationship
- r. residual = y \widehat{y} = observed predicted.

- s. Outliers: in y direction -> large residuals, in x direction -> often influential to least squares line.
- t. Extrapolation predict beyond domain studied
- u. Lurking variable
- v. Association doesn't imply causation

5. Data – Sampling

- a. Population: entire group
- b. Sample: part of population we examine
- Observation: measures but does not influence response
- d. Experiment: treatments controlled & responses observed
- e. Confounded variables (explanatory or lurking) when effects on response variable cannot be distinguished
- f. Sampling types: Voluntary response biased to opinionated, Convenience easiest
- g. Bias: systematically favors outcomes
- h. Simple Random Sample (SRS): every set of n individuals has equal chance of being chosen
- i. Probability sample: chosen by known probability
- j. Stratified random: SRS within strata divisions
- k. Response bias lying/behavioral influence

6. Experiments

- a. Subjects: individuals in experiment
- b. Factors: explanatory variables in experiment
- c. Treatment: combination of specific values for each factor
- d. Placebo: treatment to nullify confounding factors
- e. Double-blind: treatments unknown to subjects & individual investigators
- f. Control Group: control effects of lurking variables
- Gompletely Randomized design: subjects allocated randomly among treatments
- Randomized comparative experiments: similar groups nontreatment influences operate equally
- Experimental design: control effects of lurking variables, randomize assignments, use enough subjects to reduce chance
- j. Statistical signifi: observations rare by chance
- k. Block design: randomization within a block of individuals with similarity (men vs women)

7. Probability & odds

- a. 2 definitions:
- b. 1) Experimental: Observed likelihood of a given outcome within an experiment
- c. 2) Theoretical: Relative frequency/proportion of a given event given all possible outcomes (Sample Space)

- d. Event: outcome of random phenomenon
- e. n(S) number of points in sample space
- f. n(A) number of points that belong to A
- g. p 183: Empirical: P'(A) = n(A)/n = #observed/ #attempted.
- h. p 185: Law of large numbers Exp -> Theoret.
- i. p. 194: Theoretical P(A) = n(A)/n(S), favorable/possible
- j. $0 \le P(A) \le 1$, \sum (all outcomes) P(A) = 1
- k. p. 189: S = Sample space, n(S) # sample points.Represented as listing $\{(,), ...\}$, tree diagram, or grid
- I. p. 197 Complementary Events $P(A) + P(\overline{A}) = 1$
- m. p200: Mutually exclusive events: both can't happen at the same time
- n. p203. Addition Rule: P(A or B) = P(A) + P(B) P(A and B) [which = 0 if exclusive]
- p207: Independent Events: Occurrence (or not) of A does not impact P(B) & visa versa.
- p. Conditional Probability: P(A|B) Probability of A given that B has occurred. P(B|A) – Probability of B given that A has occurred.
- q. Independent Events iff P(A|B) = P(A) and P(B|A) = P(B)
- r. Special Multiplication. Rule: P(A and B) = P(A)*P(B)
- s. General mult. Rule: P(A and B) = P(A)*P(B|A) = P(B)*P(A|B)

t. Odds / Permutations

- u. *Order important vs not* (Prob of picking four numbers)
- v. Permutations: nPr, n!/(n r)!, number of ways to pick r item(s) from n items if order is important : Note: with repetitions p alike and q alike = n!/p!q!.
- w. Combinations: nCr, n!/((n r)!r!), number of ways to pick r item(s) from n items if order is NOT important
- x. Replacement vs not (AAKKKQQJJJJ10) (a) Pick an A, replace, then pick a K. (b) Pick a K, keep it, pick another
- y. Fair odds If odds are 1/1000 and 1000 payout. May take 3000 plays to win, may win after 200.

8. Probability Distribution

- Refresh on Numb heads from tossing 3 coins. Do grid {HHH,....TTT} then #Heads vs frequency chart{(0,1), (1,3), (2,3), (4,1)} Note Pascals triangle
- Random variable circle #Heads on graph above.
 "Assumes unique numerical value for each outcome in sample space of probability experiment".
- c. Discrete countable number
- d. Continuous Infinite possible values.

- e. Probability Distribution: Add next to coins frequency chart a P(x) with 1/8, 3/8, 3/8, 1/8 values
- f. Probability Function: Obey two properties of prob. $(0 \le P(A) \le 1, \sum (all outcomes) P(A) = 1.$
- g. Parameter: Unknown # describing population
- h. Statistic: # computed from sample data

İ		Sample	Population
ı		Campio	1 opaiation
	Mean	\bar{x}	μ - mu
İ	Variance	s ²	σ^2
İ	Standard	s	σ - sigma
	deviation		o olgiila

i. Base:
$$\bar{x} = \sum x/n$$
, $s^2 = \frac{\sum (x-\bar{x})^2}{(n-1)}$

	Frequency Dist	Probability Distribution
Ме	$\overline{x} = \sum xf / \sum f$	$\mu = \sum [xP(x)]$
an		, 21
Var	$s^2 = \frac{\sum (x - \overline{x})^2 f}{\sum f}$	$\sigma^2 = \sum [(x - \mu)^2 P(x)]$
	$s^2 = \frac{\sum_{i=1}^{N} (\sum_{j=1}^{N} f_j - 1)}{(\sum_{j=1}^{N} f_j - 1)}$	_
Std Dv	$s = \sqrt{s^2}$	$\sigma = \sqrt{\sigma^2}$

j. Probability acting as an $f / \sum f$. Lose the -1

9. Sampling Distribution

- a. By law of large #'s, as n -> population, $\bar{x} \rightarrow \mu$
- b. Given \overline{x} as mean of SRS of size n, from pop with μ and σ . Mean of sampling distribution of \overline{x} is μ and standard deviation is σ/\sqrt{n}
- c. If individual observations have normal distribution $N(\mu,\sigma)$ then \overline{x} of n has $N(\mu,\sigma/\sqrt{n}$)
- d. Central Limit Theorem: Given SRS of b from a population with μ and σ . When n is large, the sample mean \overline{x} is approx normal.

10. Binomial Distribution

- a. Binomial Experiment. Emphasize Bi two possible outcomes (success,failure). n repeated identical trials that have complementary P(success) + P(failure) = 1. binomial is count of successful trials where 0≤x≤n
- b. p: probability of success of each observation
- c. Binomial Coefficient: nCk = n!/(n k)!k!
- d. Binomial Prob: $P(x = k) = \left(\frac{n}{k}\right)p^{k}(1-p)^{n-k}$
- e. Binomal $\mu = np$
- f. Binomal $\sigma = \sqrt{np(1-p)}$

11. Confidence Intervals

- a. Statistical Inference: methods for inferring data about population from a sample
- b. If \bar{x} is unbiased, use to estimate μ
- c. Confidence Interval: Estimate+/- error margin
- d. Confidence Level C: probability interval captures true parameter value in repeated samples
- e. Given SRS of n & normal population, C confidence interval for μ is: $\bar{x} \pm z * \sigma / \sqrt{n}$
- f. Sample size for desired margin of error set +/-value above & solve for n.

12. Tests of significance

- g. Assess evidence supporting a claim about popu.
- h. Idea outcome that would rarely happen if claim were true evidences claim is not true
- i. Ho Null hypothesis: test designed to assess evidence against Ho. Usually statement of no effect
- j. Ha alternative hypothesis about population parameter to null
- k. Two sided: Ho: $\mu = 0$, Ha: $\mu \neq 0$
- P-value: probability, assuming Ho is true, that test statistic would be as or more extreme (smaller Pvalue is > evidence against Ho)

m.
$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

- n. Significance level α : if α = .05, then happens no more than 5% of time. "Results were significant (P < .01)"
- o. Level α 2-sided test rejects Ho: $\mu = \mu_0$ when μ_0 falls outside a level 1 μ_0 confidence int.
- a. Complicating factors: not complete SRS from population, multistage & many factor designs, outliers, non-normal distribution, σ unknown.
- b. Under coverage and nonresponse often more serious than the random sampling error accounted for by confidence interval
- c. Type I error: reject Ho when it's true α gives probability of this error
- d. Type II error: accept Ho when Ha is true
- e. Power is 1 probability of Type II error